7x^2-6x+8x^2-16=180

Simple and best practice solution for 7x^2-6x+8x^2-16=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x^2-6x+8x^2-16=180 equation:



7x^2-6x+8x^2-16=180
We move all terms to the left:
7x^2-6x+8x^2-16-(180)=0
We add all the numbers together, and all the variables
15x^2-6x-196=0
a = 15; b = -6; c = -196;
Δ = b2-4ac
Δ = -62-4·15·(-196)
Δ = 11796
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11796}=\sqrt{4*2949}=\sqrt{4}*\sqrt{2949}=2\sqrt{2949}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{2949}}{2*15}=\frac{6-2\sqrt{2949}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{2949}}{2*15}=\frac{6+2\sqrt{2949}}{30} $

See similar equations:

| 19-3d=-8 | | 1/3=2/x | | 5(4+x)+3=18 | | 34(18s)=31.50 | | 4x-100=1x | | 2((4x2)+(4x3)+(2x3))=((8)+(12)+(6)) | | b4-8=1 | | 81.24–b=15.86 | | 5(4+x)+3=8 | | 2v+76=14v+64 | | 790=2x | | 21x(x-6)=7x13 | | 4/5x+3/20x=38 | | x/2x+4=-3x+24 | | h+7944=9767 | | -2y-6y=-8y | | 2x+3x-3=11+1* | | -10x+35+5x=−5x+20 | | 3x-14+5x=2(3x-12) | | 21•(x-6)=7•13 | | 120+25x=45x* | | 12r+4+30r=9(8r-3)+7 | | 3+5=4+2a+ | | a45=17 | | 0=-d | | a45=$17 | | 3^x/9^x=1 | | 3x=x+4=90 | | 3. 6x+5=29 | | 5x-9x=3 | | 12/3x+23/5x=64 | | w45=$17 |

Equations solver categories